
International Journal of Electronics Engineering, 1(2), 2009, pp. 265-268

Design and Implementation of Frequency Analyzer

Using VHDL

Anant G. Kulkarni1 & Sudha Nair2

Department of Electronics & Telecommunication, R.C.E.T, CSVTU University,
Bhilai,(C.G), INDIA

Abstract: In this paper, we propose a VHDL based design of a frequency analyzer that implements a Fast Fourier. The
module had been developed using radix-2 decimation in time algorithm of n-point samples. Structural and Behavioral modeling
was implemented using VHDL to describe, simulate, and perform the design. The resulting design was simulated using
Xilinx ISE 9.1i and Modelsim SE 6.3f and can be synthesized on Spartan 3E DSP development board. The simulation results
are presented in this paper.

Keywords: FFT, Architecture, Butterfly unit, Simulation, Xilinx, Modelsim.

*Corresponding Author: agk30@rediffmail.com

1. INTRODUCTION

Nowadays semiconductor technology is able to create very
complex devices that can enclose a complete system in a
single chip (SoC). If the system is created from scratch,
achieving the desired performance is costly and time
consuming. To meet the tight time-to-market requirement,
the electronic design uses pre-designed intellectual property
(IP) cores as a common practice. These cores may be
parametrizable and customizable to be synthesized in a large
application specification. They are available to the designer
from heterogeneous sources, design team, CAD tool
libraries, CAD tool independent libraries, etc.

One of the areas that major demands of application
specific circuits design is digital signal processing (DSP).
Fast Fourier Transform is a computationally intensive DSP
function, widely used in many applications. Since the
pioneering work by Cooley and Tukey (Cooley and Tukey,
1965), a lot of work has been done on the FFT algorithm
such as the radix-2m algorithm and the split radix algorithm
(Brigham, 1998; Winograd, 1976; Duhamel and Hallmann,
1984). Among them, the radix-2 and radix-4 algorithms have
been used mostly for practical applications due to their
simple structures.Most of the implementations and
benchmarking of FFT algorithms has been done using
general purpose processors, DSP processors and dedicated
FFT.This paper provides a novel approach to the design of
frequency analyzer using FFT algorithm.

2. FAST FOURIER TRANSFORM

The N-point Discrete Fourier Transform (DFT) of a finite
duration sequence x(n) is defined as follows:

1

0

() () 0,1,... 1
N

nk

n

X k x n W k N
−

=

= = −∑ (1)

where W = e–j(2π/N) is referred as the twiddle factor, N is the
transform size and j = √–1.

The FFT is an efficient algorithm to compute the DFT
and its inverse (Cooley and Tukey, 1965; Brigham, 1998).
It generally falls into two classes: Decimation In Time (DIT),
and Decimation In Frequency (DIF). The DIT algorithm first
rearranges the input elements in bit-reversed order and then
builds the output transform. The DIF algorithm first
transforms and then rearranges the output values. The basic
idea of these algorithms is to break up an N-point DFT
transform into successive smaller and smaller transform
known as a butterfly (basic computational element). The
smallest transform used is a 2-point DFT known as radix-2,
it processes groups of 2 samples. The combination of two
stages of radix-2 in one stage constitute radix-4 algorithms,
it processes groups of 4 samples. There are also other
decomposition schemes known as split-radix algorithms
(Duhamel and Hallmann, 1984).

The calculations implied in the basic computational
element (butterfly) for radix-2 in DIT algorithm will be
introduced next. A and B are two complex numbers
represented as:

A = x + jX (2)

B = y + jY (3)

where x and y are real parts and X and Y are imaginary of
them. “A transform (A′)” and “B transform (B′)” are
calculated as shown the next equations:

A′ = x′ + jX′ = A + B W
N

k (4)

B′ = y′ + jY′ = A – B W
N

k (5)

266 International Journal of Electronics Engineering

W
N

k = cos(2π k/N) – j sin(2π k/N) (6)

Taking into consideration (2), (3) and (6), the transforms
may be written as:

A′ = [(x + y cos(2π k/N) + Y sin(2π k/N)) +

j(X + Y cos(2π k/N) – y sin(2π k/N))] (7)

B′ = [(x – y cos(2π k/N) – Y sin(2π k/N)) +

j(X –Ycos(2π k/N) + y sin(2π k/N))] (8)

where k depends of the number of stages and the number of
samples.

3. VHDL MODELING

The objective of this paper is to implement in an efficient
manner the equations (7) and (8) having in mind the
reusability of the resulting design as embedded core in a
possible wide range of applications. Then the number of
samples N and the number of bits to coding each sample
must be considered as generic parameters in order to adapt
the size to the specific application and to control the
quantization errors when using fixed point arithmetic. Also
the degradation performance should be considered with the
increment of the number of samples N. All components of
the hardware used in this paper have been modeled in VHDL
according to the restrictions and recommendations for high
level behavioral synthesis (Keating and Bricand, 2002).

4. ARCHITECTURAL DESIGN OF ANALYZER

The operation of the analyzer is partitioned into three main
processes. These are the Data Input, FFT Computation and
Data Output Processes. This partitioning is depicted in
Figure 1.

4.1. Block Diagram of the Analyzer

The FFT architecture consists of a single radix-2 butterfly
(which is referred as the butterfly processing element), a
dual-port FIFO RAM, a coefficient ROM, a controller and
an address generation unit. It also consists of a “cycles unit”
to separate the various cycles, namely c0, c1, c2 and c3.
This unit also outputs the ORed output of some of these
cycles such as c0 and c1. The process of writing into the
RAM during FFT computation begins only five cycles after
the first data is read from RAM. The counter unit is used to
count these cycles. Data pathways are in the form of 32-bit
signed fractions. Coefficients are stored as 32-bit words.

Figure 1: Operation of the Analyzer

The processing cycle starts with the Data input process,
during which sampled data is read in and stored in memory.
During the FFT computation process, the FFT is computed
on the stored data. During the Output process results of the
FFT computation process are read out to the outside world.
These processes are then mapped to hardware resources.

Figure 2: The FFT Processor

CONTROLLER
RAM

BUTTERFLY
PROCESSING

ELEMENT

CYCLES
UNIT

ADDRESS
GENERATION UNIT

CO-EFFICIENT
ROM

C
O

U
N

T
E

R

4.2. Butterfly Processing Element

The butterfly is the basic operator of the FFT. It computes a
two point FFT. It takes two data words from memory and
computes the FFT. The results are written back to the same
memory locations of the inputs since an in-place algorithm
is used. The butterfly processing element computes one
butterfly every four cycles. It consists of one multiplier
and two adders. The architecture for it is depicted in Figure
3. The blocks named “R” are a set of negative edge triggered
D flip flops. That is, each “R” block consists of 32 D-flip
flops, one for each bit. Similarly the “L” blocks are positive
level triggered. The blocks labeled “D” are positive edge
triggered. c0, c1, c2 and c3 are the four cycles that the
processor takes to calculate the fft. c0, c1 is the OR output
of the cycles c0 and c1. The multiplier forms the partial

Design and Implementation of Frequency Analyzer Using VHDL 267

products of the complex multiplication and produces a 32
bit signed fraction result. This is followed by the first adder
which sums the cross products of the complex
multiplication. The second adder produces the sum and
difference outputs of the butterfly operation. The butterfly
processing element takes four cycles to compute a two-point
FFT. It has a latency of five cycles. Three of these are
associated with the fact that three input components (y, Y,
and x) are required before an output can be computed and
two are to pipeline the RAM read and write operations.

4.3. Address Generation Unit (AGU)

The purpose of the address generation unit is to provide the
RAM and the coefficient ROM with the correct addresses.
It also keeps track of which butterfly is being computed in
which stage. For an 8-point complex FFT there are 3 stages,
each stage consisting of 4 butterflies. In addition to this,
since address generation during input, output and FFT
computation processes are different; it keeps track of the
mode of operation of the chip and generates the required
address. Mode of operation information is supplied by the
controller. The different blocks of the AGU are explained
separately.

4.3.1. Butterfly Generator

The butterfly generator keeps track of which butterfly is being
computed in a particular stage. It is basically a 16-bit up
counter since for an 8 point complex FFT there are 4
butterflies per stage and 4 data words per butterfly (2 real
and 2 imaginary).Note that during data input and data output
the butterfly is incremented by the clock while during fft
computation mode, it is incremented by c0. This is because,
4 cycles are required to calculate one butterfly. Hence the
butterfly generator needs to be incremented only once in
every 4 cycles during FFT computation. The selection
between the clock and “c0” is made by a multiplexer. The
“io mode” signal is used for selection. Whenever “clear” or
“stage done” signal goes high, the butterfly generator is reset.

4.3.2. Stage Generator

The stage generator keeps track of the current stage in the
FFT computation. The stage generator supplies the base
index generator with the number of the stage which is
currently being computed. For an 8 point FFT there are 3
stages hence the stage generator is basically a two bit counter
which is incremented one every 4 butterfly counts (by the
“stage done” signal).

4.3.3. Stage Done_IO Done Block

It generates four signals called “iod”, “staged” “fftd” and
“butterfly”. “iod” is generated when the “butterfly” count
is 15. This informs the controller that either the Data Input
or Output process is finished. The “staged” signal is
generated when the current “butterfly” count is 4, it
increments the stage generator by one. fftd is generated when
the stage count is three. This informs the controller that the
FFT computation process is done, hence forcing the FFT
processor to start the data output process.

4.3.4. IO-Address Generator

The IO Address Generator is responsible for generating
addresses for RAM during the data input and output
processes. During the data input process the output of the
butterfly generator “butterfly” can be used for addressing
16 locations in the RAM. However, during the data output
process data should be bit-reversed while being written to
outside world. Once in the output process bit-reversed
address is selected by the muxes in the AGU. The controller
gives the information whether the process is in IO-mode
through the signal “iomode”. This signal is used for
selecting. The butterfly has two complex data inputs A and
B. These inputs when manipulated produces four outputs x,
X, y and Y, out of which X and Y are complex values. Since
there are 16 locations, the BIG is a mode-16 counter. The
FFT mode address generation is quite complex. The address
generation is obtained by manipulating the outputs of the
butterfly generator, stage generator and the cycles.

4.3.6. The Shifters

As mentioned, the result of FFT computation is written back
into the same location as it was read. However there is a
latency of five cycles. For example, if “y” is read from the
RAM during cycle “c0”, “y1” is written into the same
location as it was read after 5 cycles that is during cycle
“c1”. So the read address is shifted in each on these five
cycles. The output of the last shifter is then given as the
write address.

4.3.7. ROM Address Generator

The ROM Address Generator is used to provide the ROM
with the correct address for collecting the sine and cosine
co-efficients. It is modeled based on the co-efficients given
in the signal flow graph.

ROM Address
Coefficient

ROM
N

E
G

A
T

E N
E

G
A

T
E

Dual Port
FIFO RAM

(Division by 2)

Figure 3: Butterfly Processing Element

268 International Journal of Electronics Engineering

4.4. Controller

The controller is modeled as a finite state machine which
has been explained already. It has seven states ranging from
rst1 to rst 7. The actions performed in each state are clearly
commented in the code.

4.5 RAM and ROM

The input is first written into the RAM. During the FFT
computation process, the FFT of two numbers is calculated
and written back into the same location in the RAM. During
the output process bit reversed address is given to the RAM
and it outputs the data in it accordingly. The ROM is used

to store the sine and cosine values needed in the FFT
computation process. It outputs these values according to
the address given to it.

5. RESULTS AND DISCUSSION

RTL Simulation of the Frequency Analyzer

The frequency analyzer unit was simulated and synthesized
separately using VHDL with the help of Xilinx ISE 9.1i
and Model Sim SE 6.3f. The butterfly unit, the address
generation unit, the controller and the ROM units were
simulated and synthesized separately. The results shown here
include the RTL and simulation of the top analyzer unit.

6. CONCLUSION

In this paper a novel approach for frequency analyzer has
been presented. The modeling, simulation and analysis of
the design are presented. The frequency analyzer unit along
with its components was separately simulated and
synthesized using Xilinx ISE 9.1i and ModelSim 6.3f.A test
bench is written for the analyzer which reads different inputs
from a file. The results obtained were seen to be matched
with that obtained using Mat lab. An 8 point FFT processor
was designed, simulated and synthesized using VHDL. The
chip can be easily upgraded for a 128 point or 256 point
FFT. The complete design can be implemented on Spartan
3E DSP development board.

REFERENCES

[1] Cooley, J. W., and J. W. Tukey, “An Algorithm for the
Machine Calculation of the Complex Fourierseries”,
Math. of Computation, 19, (1965), 297-301.

[2] Brigham, E. O., The Fast Fourier Transform and its
Applications, Prentice Hall, (1998).

[3] Winograd S., “On Computing the Discrete Fourier
Transform”, Proc. Nat. Acad. Sci. U.S., 73, (1976), 1005-
1006.

[4] Duhamel, P., and H. Hallmann, “Split Radix FFT
Algorithm”, IEEE Electronic Letters, 20, (1984), 14-16.

[5] Keating, M. and P. Bricand, “Reuse Methodology Manual:
for System-on-a-Chip Designs. Third Edition, Kluwer
Academic Publishers (2002).

[6] VHDL Modeling and Model Testing for DSP Applications
Armstrong, J. R. Gray, F. G. Meng-Wei Lin Bradley, Dept.
of Electr. & Comput. Eng., Virginia Polytech. Inst. & State
Univ., Blacksburg, VA; Industrial Electronics, IEEE
Transactions, 46, (1999).

[7] Mauricio Ayala-Rinc?, Rodrigo B. Nogueira, Carlos H.
Llanos, Ricardo P. Jacobi, Reiner W. Hartenstein,
“Modeling a Reconfigurable System for Computing the FFT
in Place via Rewriting-Logic,” sbcci, 16th Symposium on
Integrated Circuits and Systems Design (SBCCI’03),
(2003), 205.

[8] Syddyka Berna Örs, Ahmet Dervisoglu, “Modeling Bit
Multiplication Blocks for DSP Applications Using VHDL,”
Euromicro, 25th Euromicro Conference (EUROMICRO
’99), 1, (1999), 1402.

[9] J. Andersson, “A DSP ASIC Design Flow Based on VHDL
and ASIC-emulation,” Eurodac, European Design
Automation Conference with EURO-VHDL, (1995), 562.

[10] Synthesis Modeling Techniques in VHDL, Journal of
Engineering Technology, Fall 2002 by Nowlin, Robert W.,
Soman, Sanjiv C., Sundararajan, Raji D.

Figure 4: RTL of the Frequency Analyzer. Figure 5: Simulation result of the Analyzer.

